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ABSTRACT: Tropical cyclones (TC) are recognized tomodify the thermal structure of the upper ocean through the process of vertical
mixing. Assessing the role this mixing plays in the overall stratification of the upper ocean is difficult, due to the relatively short and
incomplete instrumental record. Proxy records for both TC landfalls and oceanographic stratification are preserved within the
geological record and provide insight for how past changes in TC-induced mixing have potentially affected water column structure
prior to the instrumental record. Here we provide the first comparison between previously published paleo-reconstructions of vertical
ocean density and tropical cyclone activity from the western North Atlantic. A prominent lull in TC activity has been observed prior to
approximately 1700 CE that extends back several centuries. This interval of low TC activity is shown to be concurrent with the timing
of increased ocean stratification near Great Bahama Bank, potentially due in part to reduced TC-induced mixing. To test whether this
relationship is feasible, we present numerical results from a coarse-resolution ocean general circulation model experiment isolating
the effect of TC surface wind forcing on the upper ocean. An anomaly of roughly 0.12 kgm�3 in vertical stratification occurs above
and below the mixed layer for model runs with and without TCmixing. This anomaly is roughly 25% of the entire paleo-density signal
observed just prior to 1700 CE. These results suggest that TC mixing alone cannot completely explain the density anomaly observed
prior to 1700 CE, but support TC variability as an important contributor to enhancing oceanic stratification during this interval.
Copyright # 2011 John Wiley & Sons, Ltd.
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Introduction

The relationship between tropical cyclone (TC) activity and
climate variability continues to gain interest, largely because
fundamental interactions remain poorly understood. Recent
work has linked low-frequency variability in TC activity to
changes in tropical sea surface temperature (Emanuel, 2005),
and with observable increases in the number (Webster et al.,
2005) and strength (Elsner et al., 2008) of the most intense
storms since the onset of global satellite coverage around
1970 CE. However, model projections of future cyclone
activity vary widely, and results suggest additional factors
may be important within different climate change scenarios
(Emanuel et al., 2008, 2010; Knutson et al., 2008). For example,
new model results suggest that the annual number of Atlantic
TCs is projected to decrease under continued anthropogenic
warming, but the frequency of intense events (categories 4
and 5) may double (Bender et al., 2010). While there is
strong evidence for a response in TC activity to changes in
large-scale climate properties, TCs also appear to actively
contribute to the dynamics of the climate system through ocean
mixing.
Ocean mixing is an important physical process that regulates

the global oceanic transport of heat, mass, and nutrients.
Past findings indicate that TCs are a significant source of
upper-ocean mixing in the Tropics (Sriver and Huber, 2007;
Sriver et al., 2008). It has been hypothesized that this mixing
is a major factor for maintaining the meridional overturning
circulation and ocean heat transport (Emanuel, 2001), but
recent modeling efforts suggest TCs play a more modest role
for the present-day climate (e.g. Jansen and Ferrari, 2009;
Sriver et al., 2010; Sriver and Huber, 2010), though TCs
may be more important for large-scale oceanic transports in

climate scenarios with temperature patterns warmer than
present day (Brierley et al., 2009; Fedorov et al., 2010; Korty
et al., 2008). Even though the impacts of TCs on high-latitude
climate appear to be minimal, these events do appear to
be important for tropical and subtropical ocean dynamics.
New modeling results indicate that TC-induced ocean mixing
influences upper ocean temperature and density patterns
(Fedorov et al., 2010; Jansen and Ferrari, 2009; Sriver and
Huber, 2010), due in part to the response of shallow subtropical
overturning circulation to enhanced mixing in tropical cyclone
regions.
In order to understand the nature of TC variability within the

context of future climate change it is useful to establish a long-
term record of TC information extending back to periods with
climate factors different from the present day. Currently the lack
of such long-term records is a major limitation in the field
of TC climate variability. In the Atlantic basin, an official
dataset exists containing track information and maximumwind
speeds dating back to 1851 CE (Landsea et al., 2004), but the
reliability of these data before the onset of satellite-based
observations remains controversial (Landsea et al., 2010; Mann
et al., 2007).
Proxies for both TC occurrences (e.g. Frappier et al., 2007a;

Nott, 2004), and ocean stratification (e.g. Lund et al., 2006)
exist within natural geological archives, and provide an
additional resource for evaluating potential connections
between TC activity and oceanic properties. To this end we
provide a brief review of the state of knowledge with respect to
both TC variability and ocean stratification in the western North
Atlantic over the last millennium, framed in the context of
potential interactions. Further, recent global climate modeling
results by Sriver and Huber (2010) are presented to assess the
sensitivity of vertical stratification in the western North Atlantic
to TC mixing, and to provide a quantitative evaluation for the
feasibility of TC variability as a driver for observed changes in
paleo-stratification.
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Tropical cyclone proxies

Proxies for reconstructing TCs prior to the best-track dataset
come from a diverse array of sources. Current compilations
from ship logs, newspapers, government records and diaries
extend back for several centuries both in the western North
Atlantic (Boose et al., 2001, 2004; Chenoweth, 2006;
Chenoweth and Divine, 2008; Garcia-Herrera et al., 2005;
Ludlum, 1963; Mock, 2004, 2008), and western North Pacific
(Chan and Shi, 2000; Fogarty et al., 2006; Garcia-Herrera et al.,
2007; Grossman and Zaiki, 2007; Liu et al., 2001). Negative
d18O anomalies associated with TC precipitation are preserved
in annually resolved speleothems and tree rings (Frappier et al.,
2007b; Malmquist, 1997; Miller et al., 2006; Nott et al., 2007),
and high terrestrial run-off by TCs also affecting the annual
growth rate and luminescence of coral (Lough, 2007; Nyberg
et al., 2007). TC-induced freshwater flooding events are also
preserved within sedimentary archives (Grossman, 2001;
Noren et al., 2002), with varved lacustrine chronologies
allowing for annually resolved reconstructions of intense
precipitation (Besonen et al., 2008). Additional to these historic
and precipitation-based proxies, evidence of coastal inunda-
tion by TCs is often preserved within the geological record,
including storm-induced beach ridges and scarps (Brooke et al.,
2008; Buynevich et al., 2007; Nott, 2011; Nott et al., 2007,
2009; Nott and Hayne, 2001), cyclone-transported boulder
deposits (Scheffers and Scheffers, 2006; Spiske et al., 2008;
Suzuki et al., 2008; Yu et al., 2009; Zhao et al., 2009), and the
existence of marine foraminifera within inland sediments
(Hippensteel and Martin, 1999; Scott et al., 2003; Williams,
2010).
Along with the above-mentioned proxies, storm-induced

overwash deposits preserved in coastal lagoons and salt
marshes have proven to be an especially effective method
for developing millennial-scale records of TC occurrences.
Bottom sediments collected from these ordinarily sheltered
areas are typically composed of fine-grained organic material.
In contrast, during intense TC activity, associated storm surge
and waves carry coarser sediment andmarine material from the
beach and near-shore into these back-barrier environments and
deposit them as an anomalous event layer. Over time these
storm layers are covered by accumulating fine-grained organic
matter until the next high-energy storm event forms another
anomalous deposit. The result is a preserved sedimentary
record of TC-induced flooding at a site, identified typically from
sediment cores using grain size analysis (e.g. Donnelly and
Woodruff, 2007), percent inorganic content (e.g. Liu and Fearn,
2000), and/or the relative abundance of marine sourced
material (e.g. Woodruff et al., 2009). Regions where overwash
reconstructions currently exist for the western North Atlantic
include the US east coast (Boldt et al., 2010; Donnelly et al.,
2001a,b, 2004; Donnelly and Webb, 2004; Scileppi and
Donnelly, 2007), the Gulf of Mexico (Liu and Fearn, 1993,
2000; McCloskey and Keller, 2009; Wallace and Anderson,
2010; Lane et al., 2011), and the Caribbean (Donnelly and
Woodruff, 2007; Woodruff et al., 2008b). Although still limited
in number, statistically significant trends in TC activity are
beginning to emerge from these western North Atlantic paleo-
TC overwash records (Mann et al., 2009; Woodruff et al.,
2008a). More specifically, prior to approximately 1700 CE
evidence exists for a period of decreased TC activity in the
western North Atlantic extending back for several centuries.
This lull in activity is roughly concurrent with the Little Ice
Age (LIA), when independent climate proxies suggest more
prevalent El Niño like conditions, and reduced tropical North
Atlantic sea surface temperatures (Donnelly and Woodruff,
2007; Mann et al., 2009), with both of these climatic trends

generally serving to hinder TC activity in the western North
Atlantic (e.g. Bove et al., 1998; Emanuel, 2005; Goldenberg
et al., 2001; Gray, 1984). Prior to the LIA a period of increased
TC activity similar to present levels occurs around roughly 1000
CE during an interval known as the Medieval Climate Anomaly
(MCA), with this local maximum in TC activity likely driven by
an increase in both sea surface temperature and a shift towards
more La Niña-like conditions (Mann et al., 2009).

Regional records for the northern Caribbean at Vieques,
Puerto Rico (Fig. 1), exhibit trends similar to those observed
within the TC composite proxy record constructed for the
entire western North Atlantic (Mann et al., 2009). More
specifically, a period of reduced TC activity is observed
between roughly 1700 and 1000 CE, bracketed between two
periods of relatively higher TC activity both between 1700 CE
and present, and for an extended period of time prior to 1000
CE (Fig. 2A). A pattern of increased TC activity before 1000 CE,
followed by reduced activity, is also observed both in overwash
reconstructions from the northern Gulf Coast and from the New
York region (Fig. 2A), together suggesting a concurrent shift to
decreased TC activity following the MCA (Mann et al., 2009;
Woodruff et al., 2008a). The most recent transition to increased
activity following 1700 CE is less evident in Gulf Coast records,
but observed both at the Vieques and New York sites (Fig. 2A),
potentially suggesting a digression between TC activity in
the Gulf of Mexico and that in the open western North Atlantic
(Liu and Fearn, 2000).

Reconstructions of TC wind damage from Puerto Rico also
exhibit a marked increase in severe TC wind damage of F2 and
F3 magnitude on the Fujita Scale (equivalent to approximately
hurricane categories 3–5 intensity), beginning around 1700 CE
(Boose et al., 2004), and at roughly the same time when
overwash reconstructions for storms of similar intensity at the
Vieques site show a concurrent increase in TC counts (Fig. 2B).
This historical-based reconstruction for Puerto Rico is almost
certainly biased towards a gradual decrease in storm counts
when extended toward the beginning of the record due to a
decline in the number of historical documents available and a
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Figure 1. Site map with locations for presented paleo-TC (circles) and
paleo-density (plus signs) reconstructions presented in Fig. 2. Dashed
lines identify the boundaries of spatial averaging for model results
presented in Fig. 3C, including the grid point enclosing Great Bahama
Bank (black), the Gulf Stream region at the Bahaman latitude (dark
gray), and the larger western boundary region (light gray).
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resultant decrease in the density of observations. However,
these biases notwithstanding, the sharp increase in historical
accounts at Puerto Rico around 1700 CE is still of potential
significance, given that it is concurrent with a similar increase
in storm counts from the entirely independent sediment-based
reconstructions at the Vieques site (Fig. 2B).

Paleo-density reconstructions

To assess the potential impacts of reduced TC-related mixing
prior to 1700 CE on upper ocean stratification we employ
results from Lund et al. (2006), who present millennial-scale
paleo-density reconstructions based on benthic foraminifera
from five separate water depths at Great Bahama Bank
(i.e. 700m, 530m, 440m, 260m, and the surface mixed layer
from 0 to 50m). A complete description of the sediment
processing, stable isotope, and chronological methods is
given in Lund et al. (2006). Here we provide an abbreviated
methodology.
The oxygen stable isotopic ratio of foraminifera, expressed as

d18O, depends on the temperature and d18O of seawater
(d18Ow) in which they live. Because d18Ow is linearly related to
salinity, and the difference between foraminiferal d18O and
d18Ow is thermodynamically controlled, seawater density (st)
can be estimated using d18O (Lynch-Stieglitz et al., 1999).
Sediments collected from a given water depth contain both
benthic (sea-floor-dwelling) and planktonic (surface-ocean-
dwelling) foraminifera. Planktonic foraminiferal d18O can
therefore be used to constrain st for the surface mixed layer,
while benthic species provide st constraints at thermocline
depths. Where sloping bathymetry permits, paleo-density
profiles can be created using the d18O from benthic formanifera

collected at targeted depths in combination with mixed-layer
d18O values derived from planktonic foraminifera.
A relatively good agreement has been shown between direct

water column measurements of seawater density (st) off of
Great Bahamas Bank and d18O-derived st values reconstructed
frommodern foraminifera in recently deposited sediments from
the western slope of Great Bahama Bank (Lund et al., 2006).
Supported by this correlation Lund et al. (2006) presents a time
series of stratification from Great Bahama Bank extending back
to 800 CE, and expressed as the difference between st values
just below the mixed layer at 260m and st values in the mixed
layer (Fig. 2D). Further, a subset of vertical profiles from
Lund et al. (2006) of foraminiferal-derived seawater density
progressing back into the LIA is presented in Fig. 3(A).
Theoretical age resolutions for each sediment sample is 15–
50 years, but biological mixing of the sediments degrades the
resolution such that each represents a multidecadal to century-
scale average. As expected, the vertical density profiles in
Fig. 3(A) show that density increases with water depth for each
time interval. These profiles also reveal more subtle changes in
water column stratification when expressed as the st anomaly
relative to present (Fig. 3B). For example, the surface layer st
anomaly exhibits a clear monotonic drop to�0.3 kgm�3 when
extended to 1600–1700 CE, while the st anomaly below the
mixed layer at a water depth of 260m during this same period
increases to approximatelyþ0.1 kgm�3 (Fig. 3B). This decrease
in surface water density towards the LIA combined with the
increase in densities below the mixed layer implies that water
column stratification at Great Bahama Bank was greater prior
to 1700 CE (Fig. 2D). Variability in vertical stratification at
Great Bahama Bank is broadly consistent with changes in TC
frequency inferred from overwash deposits, particularly with
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respect to reconstructions obtained just to the east of the site at
Vieques, PR (Fig. 2A and B). Specifically, the general shift
towards reduced TC frequency prior to 1700 CE (Fig. 2C) occurs
contemporaneously with an increase in vertical stratification at
Great Bahama Bank (Fig. 2D).
The only other available record of centennial-scale changes

in vertical stratification in the North Atlantic is from near Dry
Tortugas (Lund et al., 2006). Like the Great Bahama Bank site,
this location is subject to vertical mixing from TCs and displays
a prolonged interval of anomalously high vertical stratification
relative to present during a pronounced drop in TC activity
between 1000 CE and 1500 CE (Fig. 2D). Unlike Great Bahama
Bank, however, the Dry Tortugas record displays a minimum in
water column stratification around 1600 CE, followed by a
gradual increase towards present levels of stratification. The
discrepancy between the Great Bahama Bank and Dry
Tortugas sites after 1600 CE is approximately coeval with the
discrepancy in overwash records from the western North
Atlantic and Gulf of Mexico, where the New York and Vieques
records exhibit an anomalous increase in activity, while the
Western Lake, FL record (Fig. 2A) and recent results by Lane
et al. (2011) both support relatively quiescent conditions in
the northern Gulf of Mexico. Increased TC-induced mixing in
the western North Atlantic relative to the Gulf of Mexico
following roughly 1600 CE may therefore help to explain
observed discrepancies in stratification between the Great
Bahama Bank and Dry Tortugas sites. Further, the reduced
stratification during 1600 CE at the Dry Tortugas site is due
primarily to anomalously high surface salinity, rather than a
decrease in salinity at depth due to an increase in vertical
mixing. This observation suggests that factors other than TC
variability could also be responsible for the 1600 CE minimum
in stratification at Dry Tortugas, such as previously cited
mechanisms associated with a southward migration of the
Atlantic Intertropical Convergence Zone (ITCZ) (Lund and
Curry, 2006).
It is also possible that changes in the d18Ow-salinity

relationship account for density anomalies during the last
millennium; however, the evidence available does not support
this interpretation. For example, multiple paleoclimate recon-
structions from the North Atlantic suggest surface temperatures
were about 18C cooler during the Little Ice Age (e.g.
Dahl-Jensen et al., 1998; Marchitto and deMenocal, 2003).
Based on the spatial relationship between temperature and the
d18O of precipitation (Dansgaard, 1964), this would imply a

�1% decrease in the fresh end-member, and a steeper
d18Ow-salinity slope. The net effect of this change would be
to increase thermocline density during the LIA and therefore
amplify the reconstructed density anomaly rather than decrease
it. The LIA thermocline anomalies could also be eliminated if
the fresh end-member were 3% more enriched than today but
this scenario is unlikely given cooler high latitude tempera-
tures. Even if the greater thermocline d18O (and hence st could
be accounted for with a different d18Ow-S relationship, we are
left to explain d18O in the surface mixed layer whece the
signal is the reverse of that at depth. Therefore, the simplest
interpretation is that the presented d18O time series reflect real
changes in seawater density. Further, the reconstructed
thermocline anomalies are likely minimum estimates given
plausible changes in d18Ow during the LIA.

Model sensitivity experiments

Comparisons between proxy records for oceanographic
stratification at Great Bahama Bank and TC landfalls at the
nearby Vieques, PR site present a qualitative connection
between a prolonged period of reduced regional TC activity
prior to 1700 CE and a concurrent increase in water column
stratification (Fig. 2). To further assess whether this relationship
is feasible, we present numerical results initially run by Sriver
and Huber (2010) to quantify differences in ocean density
structure for simulations with and without TC surface wind
forcing. Simulations were performed using the ocean com-
ponent of the Community Climate System Model (CCSM3)
(Collins et al., 2006), using the low-resolution configuration
(100 zonal and 116 meridional grid points, with 25 vertical
levels). Current-day levels of TC activity are simulated using
globally gridded TC wind fields, derived from NASA’s Quick
Scatterometer (QuickScat), and blended into a standard bulk
forcing surface input dataset (Large and Yeager, 2004). TC
model runs include all cyclone events from 2000 to 2006, as
defined by the Best Track datasets (Landsea et al., 2004), with
simulations run for 1000 years, which is sufficiently long to
achieve near-equilibrium conditions within the uppermost
1000m.

Limitations associated with the TC simulations by Sriver
and Huber (2010) include: (i) use of a coarse-resolution
ocean model; (ii) lack of ocean–atmosphere coupling; and
(iii) incomplete equilibration of the deep ocean. It is also highly
unlikely that TC activity was completely quiescent prior to

Figure 3. (A) Centennial averaged vertical
ocean density profiles near Great Bahama
Bank since 1600 CE (solid lines) from Lund
et al. (2006), and (B) respective density profile
anomalies relative to the 20th century (dashed
lines with markers). Error estimates for the
mixed layer and thermocline anomalies are
� 0.10 kgm�3 and�0.06 kgm�3, respectively
(1s), and are presented for reference as gray
shading on anomaly profiles for the 17th and
20th centuries. (C) Density anomaly depth
profiles from idealized ocean model simu-
lations for control scenario (without TCs),
relative to simulations that includes TC forcing
closest to present-day levels. Anomaly profile
for the grid point closest to Great Bahama
Bank is shown in black. Spatially averaged
profiles across the Gulf Stream at the Bahaman
latitude and the larger western boundary
region are shown as dashed dark gray and
light gray lines, respectively (see Fig. 1 for
averaging boundaries).
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1700 CE; thus the model control scenario that excludes TC
activity completely represents a more extreme case than TC
conditions during the LIA. Keeping these caveats in mind, the
sensitivity experiments by Sriver and Huber (2010) still serves
as a useful exercise to explore how general changes in transient
TC mixing processes can influence the mean state of the
upper ocean. Comparisons between these model runs and the
paleo-reconstructions by Lund et al. (2006) therefore provide a
means to evaluate the rough order of magnitude in which
reduced TC mixing is capable of affecting variability observed
within paleo-density reconstructions.
Figure 3(C) illustrates the modeled time–mean anomalous

density profile at the grid point closest to the Great Bahama
Bank location for no TC mixing (i.e. the control scenario),
relative to simulations that best represent present day TC
activity. To first test whether density effects from TC-induced
mixing at the Great Bahama Bank location is a robust
representation for the region, we compare modeled stratifica-
tion at the site with spatially averaged values for larger regions
of the northwestern Atlantic. The same general range of
variability between simulations with and without TC winds (i.e.
control minus the TC case) is observed for expanding spatial
scales, including when spatially averaged both across the Gulf
Stream at the Bahama latitude, and the larger western boundary
region. Thus the marked agreement between model profiles at
Great Bahama Bank and the larger spatial averages support the
robustness of the anomalous TC-induced density signal at Great
Bahama Bank in indicating large-scale properties of thewestern
North Atlantic, rather than a local regional bias in the model.
In addition to more direct impacts of TC mixing on vertical

stratification, it is possible that TC variabilitymay also indirectly
influence density at the Great Bahama Bank site through
modification of Gulf Stream properties. However, our modeling
results do not support this mechanism as a primary driver for
changes in density structure, with no significant difference in
the mean characteristics of the Gulf Stream between model
cases with andwithout TCwind forcing (Fig. 4). Thus TCmixing
in the model does not appear to alter the mean strength or
location of the wind-driven subtropical gyre.

Model data comparison

The influence of TC-inducedmixing is readily observable in the
modeled density anomaly profiles (Fig. 3C), with trends similar
to those observed within the paleo-density reconstructions by
Lund et al. (2006) (Fig. 3B), although moderately smaller in
size. Reducing TC wind forcing decreases ocean density within

the top 100m while increasing ocean density beneath 100m,
thus shallowing the mixed layer and increasing stratification for
the control case. This effect is caused primarily by reduced
wind-induced vertical mixing, which diminishes the entrain-
ment of cold water through the base of the mixed layer
while decreasing warm surface water mixing down into the
thermocline.
Both numerically simulated and proxy profiles for vertical

density at Great Bahama Bank under reduced TC activity
exhibit negative anomalies in the mixed layer and positive
anomalies below. An anomaly of roughly 0.12 kgm�3 in
vertical stratification occurs above and below the mixed layer
for model runs with and without TC mixing, which is roughly
25% of the entire paleo-density anomaly observed just prior to
1700 CE relative to present (Figs 2D and 3B). The modeled
seawater density anomaly directly below the mixed layer for
the control case relative to current TC activity (roughly
0.06 kgm�3, Fig. 3C), is also similar to anomalies observed
in the paleo-record below the mixed layer during the LIA
(roughly 0.10� 0.06 kgm�3, Fig. 3B). Profiles for the control
simulation without TC-induced mixing and proxy records
during the LIA also both exhibit a negative density anomaly at
the surface (Fig. 3B and C); however, proxy-based LIA
anomalies of approximately �0.35� 0.10 kgm�3 are observed
in the surface mixed layer compared to a significantly smaller
modeled anomaly of roughly �0.06 kgm�3 for the control
simulation.
Vertical changes in density for model simulations without

TC-induced mixing are structured somewhat differently from
paleo-observations during the LIA. First, the transition from
negative surface anomalies to deeper positive density
anomalies occurs at a water depth of �100m in the model,
compared to a depth of �200m in the paleo-density data.
However, the observed depth of 200m is based on a linear
interpolation of sampling depths at 50m and 260m, with the
lack of observations between these two points potentially
helping to explain this particular model/data discrepancy.
Model results also indicate that mixing associated with TCs
primarily affect the upper 300–400m of the water column,
while higher LIA density anomalies are observed to exist
well below this depth, although error estimates for benthic
anomalies (� 0.06 kgm�3) suggest results at a water depth of
700m are not statistically different from zero (Fig. 3B).
TC-inducedmixing is naturally one of several factors that can

influence seawater density at the Great Bahama Bank site, with
model/data discrepancies suggesting an ensemble of processes
contributing to increased stratification during the LIA. Indeed,

Figure 4. Modeled barotropic stream functions for the North Atlantic region for model simulations performed by Sriver and Huber (2010). (A) Case
with TC winds. Units are in sverdrups (1 Sv¼106 m3 s�1). (B) Same as A, but for control scenario without TC winds. (C) Difference between the cases
shown in A and B. Very little change is observed between the two scenarios. This figure is available in colour online at wileyonlinelibrary.com.
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Lund and Curry (2006) hypothesize that the reduced influence
of saline water from the North Atlantic subtropical gyre due to a
southward shift of the ITCZ likely served to decrease surface
salinity at Great Bahama Bank during the LIA.
Additionally, density could also respond to altered vertical

mixing or varying boundary conditions in the ventilated
thermocline region. Our intention here is not to exclude other
mechanisms as potential drivers for observed variability in
ocean paleo-stratification, but rather to put forth TC mixing as
an additional contributor capable of forcing density changes at
roughly the same order of magnitude as variability observed
during the past millennium.

Conclusion

Foraminiferal records provide observational evidence that
upper ocean density structure near Great Bahama Bank has
changed during the past millennium. Specifically, this region
exhibited stronger stratification between roughly 1000 and
1700 CE, which is roughly concurrent with the LIA. A general
decrease in the number of TCs affecting the western North
Atlantic relative to present also occurs during this same time
interval. On the basis of this correlation we present a potential
link between reduced TC mixing and observed centennial
changes to the vertical structure of the tropical western North
Atlantic. A coarse-resolution ocean model sensitivity exper-
iment provides a further assessment of this potential connec-
tion. The model can explain roughly 25% of the total anomaly
in vertical paleo-density when driven without TC surface wind
forcing. Modeling results therefore suggest that TC mixing
alone cannot completely explain the entire density anomaly
observed during the LIA, but do support TC variability as an
important and feasible contributor to enhancing oceanic
stratification during this interval.
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